
The Fundamental Theorem of Calculus Part 2

- 1. If f and g are differentiable functions, then $\int_0^{g(x)} f'(t)dt =$
 - (a) f(g(x))
 - (b) g(f(x))
 - (c) g(f(x)) g(f(0))
 - (d) f(g(x)) f(0)
 - (e) f(g(x)) f(g(0))
- $2. \ \frac{d}{dx} \int_2^{h(x)} f(t) \, dt =$
 - (a) $f(h(x)) \cdot h'(x)$
 - (b) $f'(h(x)) \cdot h'(x)$
 - (c) f(h(x)) f(2)
 - (d) f(h(x))
 - (e) f'(h(x))
- 3. $\frac{d}{dx} \int_{x}^{7} \sqrt{2t^4 + t + 1} dt =$

4. The function A is defined as $A(x) = \int_{-6}^{x} f(t)dt$. The graph of f is shown below.

- (a) Evaluate A(4) and A(-8).
- (b) Find A'(2).
- (c) According to the information provided, does A(x) have a maximum? Why?
- (d) According to the information provided, does A(x) have a minimum? Why?

$$5. \frac{d}{d\theta} \int_{-2}^{\cos(\theta)} x^4 \, dx =$$